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Abstract: Automatic detection of violent actions in public places through video analysis is difficult 1

because the employed Artificial Intelligence-based techniques often suffer from generalization prob- 2

lems. Indeed, these algorithms hinge on large quantities of annotated data and usually experience a 3

drastic drop in performance when used in scenarios never seen during the supervised learning phase. 4

In this paper, we introduce and publicly release the Bus Violence benchmark, the first large-scale 5

collection of video clips for violence detection in public transport, where some actors simulated 6

violent actions inside a moving bus in changing conditions such as background or light. Moreover, 7

we conduct a performance analysis of several state-of-the-art video violence detectors pre-trained 8

with general violence detection databases on this newly established use case. The achieved moderate 9

performances reveal the difficulties in generalizing from these popular methods, indicating the need 10

to have this new collection of labeled data beneficial to specialize them in this new scenario. 11

Keywords: Violence Detection; Action Recognition; Fight Detection; Video Surveillance; Deep 12

Learning; Violence Detection Benchmark; Violence in Public Transport 13

1. Introduction 14

The ubiquity of video surveillance cameras in modern cities and the significant growth 15

of Artificial Intelligence (AI) provide new opportunities for developing functional smart 16

Computer Vision-based applications and services for citizens, primarily based on Deep 17

Learning solutions. Indeed, on the one hand, we are witnessing an increasing demand for 18

video surveillance systems in public places to ensure security in different urban areas such 19

as streets, banks, or railway stations. On the other hand, it has become impossible or too 20

expensive to manually monitor this massive amount of video data in real-time: problems 21

such as lack of personnel and slow response arise, leading to strong demand for automated 22

systems. 23

In this context, many smart applications, ranging from crowd counting [1,2] and people 24

tracking [3,4], to pedestrian detection [5,6], re-identification [7] or even facial reconstruction 25

[8], have been proposed and are nowadays widely employed worldwide, helping to prevent 26

many criminal activities by exploiting AI systems that automatically analyze this deluge 27

of visual data, extracting relevant information. In this work, we focus on the specific task 28

of violence detection in videos, a subset of human action recognition that aims to detect 29

violent behaviors in video data. Although this task is crucial to investigate the harmful 30

abnormal contents from vast amounts of surveillance video data, it is relatively unexplored 31

compared to common action recognition. 32
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One of the potential places in which an automatic violence detection system should be 33

developed is public transport, such as buses, trains, etc. However, evaluating the existing 34

approaches (or creating new ones) in this scenario is difficult due to the lack of labeled data. 35

Although some annotated datasets for video violence detection in general contexts already 36

exist, the same cannot be said for the case of public transport environments. To fill this gap, 37

in this work, we introduce a benchmark specifically designed for this scenario. We collected 38

and publicly released [9] a large-scale dataset gathered from multiple cameras located inside 39

a moving bus where several people simulated violent actions, such as stealing an object 40

from another person, fighting between passengers, etc. Our dataset, named Bus Violence, 41

contains 1,400 video clips manually annotated as having or not violent scenes. To the best 42

of our knowledge, it is the first dataset entirely located in public transport and is one of 43

the biggest benchmarks for video violence detection in the literature. The main difference 44

compared to the other existing databases is also connected to the dynamic background - the 45

violent actions are recorded during bus movement, which indicates different illumination 46

(in contrast to the static background of other datasets), making violence detection much 47

more challenging. 48

In this paper, we first introduce the dataset and describe the data collection and anno- 49

tation processes. Then, we present an in-depth experimental analysis of the performance of 50

several state-of-the-art video violence detectors in this newly established scenario, serv- 51

ing as baselines. Specifically, we employ our Bus Violence dataset as a testing ground for 52

evaluating the generalization capabilities of some of the most popular Deep Learning- 53

based architectures suitable for video violence detection, pre-trained over general violence 54

detection databases present in the literature. Indeed, the Domain Shift problem, i.e., the 55

domain gap between the train and the test data distributions, is one of the most critical 56

concerns affecting Deep Learning techniques, and it has become paramount to measure 57

the performance of these algorithms against scenarios never seen during the supervised 58

learning phase. We hope this benchmark and the obtained results may become a reference 59

point for the scientific community concerning violence detection in videos captured from 60

public transport. 61

Summarizing, the contributions of this paper are three-fold: 62

• we introduce and publicly release [9] the Bus Violence dataset, a new collection of data 63

for video violence detection in public transports; 64

• we test the generalization capabilities over this newly established scenario by employ- 65

ing some state-of-the-art video violence detector pre-trained over existing general- 66

purpose violence detection data; 67

• we demonstrate through extensive experimentation that the probed architectures 68

struggle to generalize to this very specific yet critical real-world scenario, suggesting 69

that this new collection of labeled data could be beneficial to foster the research 70

towards more generalizable deep learning methods able to deal also with very specific 71

situations. 72

The rest of the paper is structured as follows. Section 2 reviews related work on 73

existing datasets and methods for video violence detection. Section 3 describes the Bus 74

Violence dataset. The performance analysis of several popular video violence detection 75

techniques on this newly introduced benchmark is presented in Section 4. Finally, we 76

conclude the paper with Section 5, suggesting some insights on future directions. The 77

evaluation code and all other resources for reproducing the results are available at 78

https://ciampluca.github.io/bus_violence_dataset/. 79

2. Related Work 80

Several annotated datasets have been released in the last few years to support the 81

supervised learning of modern video human action detectors based on deep neural net- 82

works. One of the biggest datasets was proposed in the project of Kinetics 400/600/700 83

[10–12] related to the number of human action classes such as people interactions and 84

single behavior. The given benchmark consists of high-quality videos of about 650,000 clips 85

https://ciampluca.github.io/bus_violence_dataset/
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Table 1. Summary of the most popular existing datasets in the literature. We report the task for which
they are used, together with the number of classes and videos that characterized them.

Name of dataset Task Number of classes Number of videos

Kinetics 400/600/700 [10–12] Human Action Detection 400/600/700 650,000
HMDB51 [13] Human Action Detection 51 7,000
UCF-101 [14] Human Action Detection 101 13,000
UCF-Crime [15] Anomaly Detection 13 1,900

NTU CCTV-Fights [18] Violence Detection 2 1,000
AIRTLab [19,20] Violence Detection 2 350
Hockey and Movies Fight [16] Violence Detection 2 1,000
Violent-Flows [17] Violence Detection 2 250
Surveillance Camera Fight [21] Violence Detection 2 300
RWF-2000 [22] Violence Detection 2 2,000
Real-Life Violence Situations [23] Violence Detection 2 2,000

lasting around 10 seconds each. Alternatively, other options are represented by HMDB51 86

[13], which consists of nearly 7,000 videos recorded for 51 action classes, and UCF-101 [14], 87

made up of 101 action classes over 13k clips and 27 hours of video data. In contrast, datasets 88

containing only abnormal actions (such as fights, robberies, or shootings) were introduced 89

in the UCF-Crime benchmark [15], a large-scale dataset of 1900 real-world surveillance 90

videos for anomaly detection. 91

However, in the literature, there are only a few benchmarks suitable for the video 92

violence detection task, which consists of binary classifying clips as containing (or not) any 93

actions considered to be violent. In [16], the authors introduced two video benchmarks 94

for violence detection, namely the Hockey Fight and the Movies Fight datasets. The former 95

consists of 200 clips extracted from short movies, a number that is insufficient nowadays. 96

On the other hand, the second one has 1,000 fight and non-fight clips from the ice hockey 97

game. In this case, the lack of diversity represents the main drawback because all the videos 98

are captured in a single scene. Another dataset, named Violent-Flows, has been presented 99

in [17]. It consists of about 250 video clips of violent/non-violent behaviors in general 100

contexts. The main peculiarity of this data collection is represented by its overcrowded 101

scenes but low image quality. More, in [18] the NTU CCTV-Fights is introduced, which 102

covers 1,000 videos of real-world fights coming from CCTV or mobile cameras. 103

More recently, the authors of [19,20] proposed the AIRTLab dataset, a small collection 104

of 350 video clips labeled as “non-violent” and “violent,” where the non-violent actions 105

include behaviors suche as hugs and claps that can cause false positives in the violence 106

detection task. Furthermore, the Surveillance Camera Fight dataset has been presented in 107

[21]. It consists of 300 videos in total, 150 of which describe fight sequences and 150 depict 108

non-fight scenes, recorded from several surveillance cameras located in public spaces. 109

Also the RWF-2000 [22] and the Real-Life Violence Situations [23] datasets consist of video 110

gathered from public surveillance cameras. In both collections, the authors collected 2,000 111

video clips: half of them include violent behaviors, while others belong to non-violent 112

activities. All these benchmarks share the characteristic of having a still background since 113

the clips are captured from fixed surveillance cameras. We summarize the statistics of all 114

the above-described databases in Table 1. 115

To complement these datasets, in this work, a newly large-scale benchmark suitable 116

for human violence detection is constructed by gathering video clips from several cameras 117

located inside a moving bus. To the best of our knowledge, our Bus Violence dataset is the 118

first collection of videos depicting violent scenes concerning public transport. 119
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3. The Bus Violence Dataset 120

Our Bus Violence dataset [9] aims to overcome the lack of significant public datasets 121

for human violence detection in public transport such as buses or trains. Already pub- 122

lished benchmarks mainly present situations with actions in stable conditions from videos 123

gathered by urban surveillance cameras located in fixed positions, such as buildings, street 124

lamps, etc. On the other hand, records in public transport change in many directions: 125

1) the background outside windows has different view due to general movement, 2) the 126

movement is dynamic, but it can be slow or fast, 3) there are many illumination changes 127

due to different weather conditions and position of the vehicle. For those reasons, the 128

proposed Bus Violence benchmark consists of data recorded in dynamic conditions (general 129

bus movement). In the following, we detail the processes of data collection and curation. 130

3.1. Data Collection 131

The videos were acquired in a three-hour window during the day, during which the 132

bus continued traveling and stopping around closed zones. The participants of records 133

were getting inside and outside the bus playing already defined actions. Specifically, 134

the unwanted situations (treated as violent actions) were concerned as a fight between 135

passengers, kicking and tearing pieces of equipment, and tearing out or stealing an object 136

from another person (robbery). An important aspect is the diversity of people. Ten actors 137

took part in the recordings and changed their clothes at different times to ensure a reliable 138

variety of situations. In addition, thanks to the conditions in the closed depot, it was 139

possible to obtain different lighting conditions, for example, driving in the sun, parking in 140

a very shaded place, etc. 141

The test system was able to record videos from three cameras at 25 FPS in .mp4 format 142

(H.264). Our recording system was installed manually by ourselves and composed of 143

two cameras located in the corners of the bus (with resolution 960 × 540 px and 352 × 288 144

px, respectively) and one fisheye in the middle (1280 × 960 px). In total, we recorded a 145

three-hour video — one hour dedicated to actions considered violent and two hours to 146

non-violent situations. 147

Table 2. The basic information concerning the Bus Violence benchmark, including the number of
situations for violent and non-violent actions and the basic number of frames.

# videos with resolution

Class # situations 1280 × 960 px 960 × 540 px 352 × 288 px

Violence 700 212 222 266
Non-violence 700 240 210 250

3.2. Data Curation 148

After the acquisition, collected videos were manually checked and split. Specifically, 149

we divided all the videos into single shorter clips, ranging from 16 frames to a maximum 150

length of 48 frames, capturing an exact action (either violent or non-violent). This served to 151

avoid single shots containing both violent and non-violent actions, which may be confusing 152

for video-level violence detection models. Then, these resulting videos were filtered and 153

annotated. In particular, the ones not containing a violent action were classified as non- 154

violent situations. In these clips, passengers were just sitting, standing, or walking inside a 155

bus. More in-depth, we operated by exploiting a two-stage manual labeling procedure. In 156

the first step, three human annotators performed a preliminary video classification into the 157

two classes – violence/no violence. Then, in the second stage, two additional independent 158

experts conducted further analysis, filtering out the wrong samples. To obtain more reliable 159

labels, we decided not to leverage the use of automatic labeling tools that would have 160

required further manual verification. 161
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Figure 1. Samples of our Bus Violence benchmark belonging to the violence class, where the actors
simulated violent actions such as fighting, kicking, or stealing an object from another person. Each
row corresponds to a different camera having a different perspective.

After the above-described operations, the non-violence class resulted in more videos 162

than the violence class. Therefore, we undersampled the non-violence samples by randomly 163

discarding videos to balance the dataset perfectly. In the end, the final curated dataset 164

contains 1,400 videos, evenly divided into the two classes. In each class, we obtained 165

almost the same number of videos for each of the three different resolutions. Specifically, 166

we obtained 212 violence and 240 non-violence clips for the 1280 × 960 px resolution, 222 167

violence and 210 non-violence for the 960 × 540 px resolution, and 266 violence and 250 168

non-violence for the 352 × 288 px resolution. We placed them in two separate folders, each 169

containing 700 .mp4 video files encoded in the H.264 format. We report the final statistics of 170

the resulting dataset in 2. 171

In Figure 1 and Figure 2 we show some samples from the final curated dataset of the 172

violence and non-violence classes, respectively. 173

4. Performance Analysis 174

In this section, we evaluate several Deep Learning-based video violence detectors 175

present in the literature on our Bus Violence benchmark. Following the primary use-case for 176
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Figure 2. Samples of our Bus Violence benchmark belonging to the non-violence class, where the actors
were just sitting, standing, or walking inside the bus. Each row corresponds to a different camera
having a different perspective.
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this dataset explained in Section 1, we employ it as a test benchmark 1 to understand how 177

well the considered methods, pre-trained over existing general violence detection datasets, 178

can generalize to this very specific yet challenging scenario. 179

4.1. Considered Methods 180

We selected some of the most popular methods coming from human action recognition, 181

adapting them to our task, and some of the most representative techniques specific to video 182

violence detection. We briefly summarize them below. We refer the reader to the papers 183

describing the specific architectures for more details. 184

Human action recognition methods aim to classify videos in several classes, relying 185

on human actions that occur in them. Since actions can be formulated as spatiotemporal 186

objects, many architectures that extend 2D image models to the spatiotemporal domain 187

have been introduced in the literature. Here, we considered the ResNet 3D network [24] 188

that handles both spatial and temporal dimensions using 3DConv layers [25] and the 189

ResNet 2+1D architecture [24], that instead decomposes the convolutions into separate 190

2D spatial and 1D temporal filters [26]. Furthermore, we took into account of SlowFast 191

[27], a two-pathway model where the first one is designed to capture semantic information 192

that can be given by images or a few sparse frames operating at low frame rates, while 193

the other one is responsible for capturing rapidly changing motion, by operating at fast 194

refreshing speed. Finally, we exploited the Video Swim Transformer [28], a model that relies 195

on the recently introduced Transformer attention modules in processing image feature 196

maps. Specifically, it extends the efficient sliding-window Transformers proposed for image 197

processing [29] to the temporal axis, obtaining a good efficiency-effective trade-off. 198

On the other hand, video violence detection methods aim at binary classifying videos 199

to predict if they contain (or not) any actions considered to be violent. In this work, we 200

exploited the architecture proposed in [30], consisting of a series of convolutional layers for 201

spatial features extraction, followed by Convolutional Long Short Memory (ConvLSTM) 202

[31] for encoding the frame level changes. Furthermore, we also considered the network in 203

[32], a variant of [30], where a spatio-temporal encoder built on a standard convolutional 204

backbone for features extraction is combined with the Bidirectional Convolutional LSTM 205

(BiConvLSTM) architecture for extracting the long-term movement information present in 206

the clips. 207

Although most of these techniques employ the raw RGB video stream as input, we 208

probed these architectures by also feeding them with the so-called frame-difference video 209

stream, i.e., the difference of adjacent frames. Frame differences serve as an efficient 210

alternative to computationally expensive optical flow. It is shown to be effective in several 211

previous works [30,32,33] by promoting the model to encode temporal changes between 212

the adjacent frames boosting the capture of motion information. 213

4.2. Experimental Setting 214

We exploited three different very general violence detection datasets to train the above 215

methods: Surveillance Camera Fight [21], Real-Life Violence Situations [23], and RWF-2000 216

[22], already mentioned in Section 2 and summarized in Table 1. Surveillance Camera Fight 217

contains 300 videos, while both Real-Life Violence Situations and RWF-2000 contain 2,000 218

videos. All these datasets are perfectly balanced with respect to the number of violent 219

and non-violent shots. The scenes captured in these datasets, recorded from fixed security 220

cameras, collect very heterogeneous and everyday life violent and non-violent actions. 221

Therefore, they are the best candidate datasets available in the literature to train Deep 222

Neural Networks to recognize general violent actions. Other widely-used datasets, like 223

Hockey Fight [16] or Movies Fight [16] do not contain enough diverse violence scenarios that 224

1 Although in this work we exploited the whole dataset as a test benchmark, in [9] we provide training and test
splits for researchers interested in using our data also for training purposes.
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can be transferable to public transport scenarios, and therefore we discarded them in our 225

analysis. 226

Concerning the action recognition models, we replaced the final classification head 227

with a binary classification layer, outputting the probability that the given video contains 228

(or does not contains) violent actions. To obtain a fair comparison among all the considered 229

methods, we employed their original implementations in PyTorch if present, and we re- 230

implemented them otherwise. Also, when available, we started from the models pre-trained 231

on Kinetics-400, the common dataset used for training general action recognition models. 232

Following previous works, we used Accuracy to measure the performance of the 233

considered methods, defined as: 234

Accuracy =
TP + TN

TP + TN + FP + FN
, (1)

where TP, TN, FP, and FN are the True Positives, True Negatives, False Positives, and False 235

Negatives, respectively. To have a more in-depth comparison between the obtained results, 236

we also considered as metrics the F1-score, the False Alarm and the Missing Alarm, defined 237

as follows: 238

F1 = 2 × Precision × Recall
Precision + Recall

, (2)

FalseAlarm =
FP

TN + FP
, (3)

MissingAlarm =
FN

TP + FN
, (4)

where Precision and Recall are defined as TP
TP+FP and TP

TP+FN , respectively. Finally, to 239

account also for the probabilities of the detections, we employed the Area Under the Receiver 240

Operating Characteristics (ROC AUC), computed as the area under the curve plotted with 241

True Positive Rate (TPR) against the False Positive Rate (FPR) at different threshold settings, 242

where TPR = Recall = TP
TP+FN and FPR = FP

TN+FP . 243

We employed the following evaluation protocol to have reliable statistics on the final 244

metrics. For each of the three considered training datasets, we randomly varied the training 245

and validation subsets five times, picking up the best model in terms of accuracy and testing 246

it over the full Bus Violence benchmark. Then, we reported the mean and the standard 247

deviation of these five runs. 248

4.3. Results and Discussion 249

We report the results obtained by exploiting the three training general violence de- 250

tection datasets in Table 3, Table 4, and Table 5. Considering the pre-training Surveillance 251

Camera Fight dataset, the model which turns out to be the most performing is SlowFast, 252

followed by the Video Swim Transformer. On the other hand, regarding the Real-life Violence 253

Situations dataset in Table 4, the best model was the ResNet 3D network, followed by 254

SlowFast. Finally, concerning the RWF-2000 benchmark (Table 5), the more accurate models 255

result being the ResNet 2+1D, the SlowFast and the Video Swim Transformer architectures. 256

However, overall, all the considered models exhibit moderate performance, indicating 257

the difficulties in generalizing their abilities in classifying videos in the new challenging 258

scenario represented by our Bus Violence dataset. 259

An important observation can be made concerning False Alarms and Missing Alarms. 260

Specifically, while all the considered methods generally obtained very good results regard- 261

ing the first metric, they struggled with the latter. Since missing alarms are critical in this 262

use case scenario, since they reflect violent actions that happened but were not detected, 263

this represents a major limitation for all the state-of-the-art violence detection systems. The 264

main responsible for this problem is to be sought in the high number of False Negatives, 265

which indeed also affects the Recall and, consequently, the F1-score, another evaluation 266
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Table 3. Cross-dataset evaluation (pre-training on Surveillance Camera Fight [21] dataset, test on our
Bus Violence dataset).

Accuracy ↑ F1 ↑ False Alarm ↓ Miss Alarm ↓ ROC AUC ↑
Model Mode

Hanson et al. [32] * color-rgb 0.5383±0.0236 0.1894±0.1169 0.0362±0.0303 0.8871±0.0753 0.6813±0.0274
frame-diff 0.5175±0.0166 0.1907±0.1622 0.0975±0.1329 0.8675±0.1305 0.6105±0.0668

Sudhakaran and Lanz [30]
color-rgb 0.5236±0.0098 0.2729±0.1887 0.1654±0.1721 0.7875±0.1835 0.5517±0.0192
frame-diff 0.5250±0.0136 0.3495±0.1773 0.2348±0.1504 0.7152±0.1749 0.5432±0.0137

ResNet 2+1D [24] $ color-rgb 0.6620±0.0602 0.5063±0.1355 0.0393±0.0308 0.6368±0.1396 0.7915±0.0495
frame-diff 0.6396±0.0714 0.4488±0.1831 0.0382±0.0276 0.6825±0.1695 0.8087±0.0364

ResNet 3D [24] $ color-rgb 0.6780±0.0399 0.5417±0.0938 0.0334±0.0145 0.6106±0.0937 0.8745±0.0057
frame-diff 0.6555±0.0349 0.4929±0.0788 0.0286±0.0076 0.6604±0.0759 0.8622±0.0222

SlowFast [27] $ color-rgb 0.7596±0.0509 0.6955±0.0999 0.0606±0.0669 0.4203±0.1674 0.8963±0.0079
frame-diff 0.7597±0.0548 0.6896±0.1083 0.0360±0.0260 0.4446±0.1328 0.8955±0.0203

Video Swim Transformer [28] $ color-rgb 0.6721±0.0404 0.5596±0.0824 0.0814±0.0557 0.5743±0.1030 0.7864±0.0443
frame-diff 0.6971±0.0547 0.5972±0.1373 0.0839±0.0735 0.5218±0.1706 0.8065±0.0473

* Re-implemented in this work. $ Pre-trained on Kinetics-400.

metric that is particularly problematic for all the considered methods. In Figure 3, we report 267

some samples of True Positive, True Negative, False Positive, and False Negative. Another 268

point worthy of note is that the majority of the most performing methods come from the 269

human action recognition task. We deem that they are more robust to generalization to 270

unseen scenarios because they are pre-trained using the Kinetics-400 dataset, from which 271

they learned more strong features able to help the network in classifying the videos also in 272

this specific use-case. 273

Finally, we report in Figure 4 the ROC curves concerning the three most performing 274

models, i.e., SlowFast, ResNet 3D, and Video Swin Transformer, considering both color 275

and frame-difference inputs. Specifically, we plotted the curves for all three employed 276

pre-training datasets. The dataset which provides the best generalization capabilities over 277

our Bus Violence benchmark result to be the Surveillance Camera Fight dataset, followed 278

by RWF-2000. However, as already highlighted, not one architecture shines when tested 279

against our challenging scenario. 280

5. Conclusions and Future Directions 281

In this paper, we proposed and made freely available a novel dataset, called Bus 282

Violence, which collects shots from surveillance cameras inside a moving bus, where some 283

actors simulated both violent and non-violent actions. It is the first collection of videos 284

describing violent scenes over public transport, characterized by peculiar challenges such 285

as different backgrounds due to the bus movement and illumination changes due to varying 286

positions of the vehicle. This dataset has been proposed as a benchmark for testing current 287

state-of-the-art violence-detection and action-detection networks in challenging public 288

transport scenarios. This research is motivated by the fact that public transports are very 289

exposed to many violent or criminal situations, and their automatic detection may be 290

helpful to trigger an alarm to the local authorities promptly. However, it is known that 291

state-of-the-art deep learning methods cannot generalize well to never seen scenarios due 292

to the Domain Shift problem, and specific data is needed to train architectures to work 293

correctly on the target scenarios. 294

In our work, we verified many state-of-the-art video-based architectures by training 295

them on largely-used violence datasets (Surveillance Camera Fight, Real-life Violence Situa- 296
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Table 4. Cross-dataset evaluation (pre-training on Real-life Violence Situations [23] dataset, test on our
Bus Violence dataset).

Accuracy ↑ F1 ↑ False Alarm ↓ Miss Alarm ↓ ROC AUC ↑
Model Mode

Hanson et al. [32] * color-rgb 0.5846±0.0212 0.4976±0.0905 0.2597±0.1220 0.5711±0.1389 0.6150±0.0068
frame-diff 0.5787±0.0268 0.3786±0.0957 0.1079±0.0539 0.7346±0.1003 0.6385±0.0366

Sudhakaran and Lanz [30]
color-rgb 0.5195±0.0021 0.4482±0.0261 0.3529±0.0405 0.6082±0.0421 0.5533±0.0245
frame-diff 0.5420±0.0208 0.5166±0.0996 0.4337±0.1772 0.4823±0.1823 0.5608±0.0210

ResNet 2+1D [24] $ color-rgb 0.5938±0.0913 0.3660±0.2960 0.1081±0.1079 0.7043±0.2881 0.7108±0.0665
frame-diff 0.5576±0.0222 0.2650±0.1142 0.0540±0.0626 0.8309±0.0978 0.6723±0.0700

ResNet 3D [24] $ color-rgb 0.6021±0.0399 0.4739±0.1493 0.1920±0.2021 0.6037±0.1971 0.6728±0.0254
frame-diff 0.6521±0.0265 0.6333±0.0640 0.3186±0.1839 0.3771±0.1769 0.7334±0.0468

SlowFast [27] $ color-rgb 0.5976±0.0497 0.3495±0.1552 0.0383±0.0423 0.7666±0.1402 0.6794±0.0215
frame-diff 0.5704±0.0143 0.2833±0.0698 0.0318±0.0296 0.8273±0.0531 0.6616±0.0287

Video Swim Transformer [28] $ color-rgb 0.5769±0.0421 0.3278±0.1572 0.0714±0.0677 0.7749±0.1408 0.6875±0.0456
frame-diff 0.6130±0.0498 0.4992±0.1863 0.2077±0.1585 0.5663±0.2107 0.6771±0.0590

* Re-implemented in this work. $ Pre-trained on Kinetics-400.

Table 5. Cross-dataset evaluation (pre-training on RWF-2000 [22] dataset, test on our Bus Violence
dataset).

Accuracy ↑ F1 ↑ False Alarm ↓ Miss Alarm ↓ ROC AUC ↑
Model Mode

Hanson et al. [32] * color-rgb 0.5120±0.0078 0.0690±0.0357 0.0126±0.0058 0.9634±0.0200 0.6692±0.0506
frame-diff 0.5041±0.0050 0.0272±0.0200 0.0029±0.0023 0.9889±0.0109 0.6044±0.0212

Sudhakaran and Lanz [30]
color-rgb 0.5109±0.0100 0.0868±0.0859 0.0280±0.0329 0.9503±0.0524 0.5230±0.0257
frame-diff 0.5024±0.0019 0.0261±0.0153 0.0086±0.0077 0.9866±0.0081 0.5287±0.0183

ResNet 2+1D [24] $ color-rgb 0.5477±0.0232 0.1788±0.0766 0.0049±0.0030 0.8997±0.0472 0.7085±0.0618
frame-diff 0.5806±0.0192 0.2868±0.0579 0.0089±0.0037 0.8300±0.0402 0.7607±0.0440

ResNet 3D [24] $ color-rgb 0.5540±0.0176 0.1997±0.0571 0.0043±0.0010 0.8877±0.0353 0.7645±0.0224
frame-diff 0.5383±0.0201 0.1456±0.0681 0.0034±0.0013 0.9200±0.0405 0.7515±0.0264

SlowFast [27] $ color-rgb 0.5856±0.0275 0.2936±0.0805 0.0037±0.0019 0.8251±0.0563 0.7849±0.0569
frame-diff 0.5596±0.0259 0.2141±0.0779 0.0029±0.0017 0.8780±0.0516 0.7922±0.0289

Video Swim Transformer [28] $ color-rgb 0.5496±0.0157 0.2024±0.0563 0.0161±0.0088 0.8846±0.0362 0.7313±0.0642
frame-diff 0.5618±0.0347 0.2329±0.1142 0.0143±0.0098 0.8621±0.0781 0.7441±0.0636

* Re-implemented in this work. $ Pre-trained on Kinetics-400.
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Figure 3. Some samples of predictions concerning the three most performing pairs model/pre-
training dataset, i.e., SlowFast/Surveillance Camera Fight, ResNet 3D/Real-life Violent Situations,
and Video Swim Transformer/RWF-2000 (one for each column). In the four rows, we report True
Positives, True Negatives, False Positives, and False Negatives.
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(a) SlowFast
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(c) Video Swin Transformer
Figure 4. ROC curves concerning the three most performing pairs model/pre-training dataset, i.e., SlowFast/Surveillance Camera
Fight SCF), ResNet 3D/Real-life Violent Situations (RLV), and Video Swim Transformer/RWF-2000, tested against our Bus Violence
benchmark. We report the curves for both the color (RGB) and frame-difference (FD) inputs.

tions, and RWF-2000), and then testing them on the collected Bus Violence benchmark. The 297

performed experiments showed that even very recent networks – like Video Swin Trans- 298

formers – could not generalize to an acceptable degree, probably due to changing lighting 299

and environmental conditions, as well as to difficult camera angles and low-quality images. 300

CNN-based approaches seem to obtain the best results, still reaching an unsatisfactory 301

level to make such systems reliable in real-world applications. 302

From our findings, we can conclude that the probed architectures cannot generalize to 303

conceptually similar yet visually different scenarios. Therefore, we hope that the provided 304

dataset will serve as a benchmark for training and/or evaluating novel architectures able to 305

generalize also to these particular yet critical real-world situations. In this regard, we claim 306

that domain-adaptation techniques are the key to obtaining features not biased to a specific 307

target scenario [34,35]. Furthermore, we hope that the rising research in unsupervised 308

and self-supervised video understanding [36,37] can be a good direction for acquiring 309

high-level knowledge directly from pixels, without any manual or automatic labeling. This 310

would pave the way toward plug-and-play smart cameras capable of learning about the 311

specific scenario once deployed in the real world. 312

Finally, we also plan to use the acquired dataset for other relevant tasks in public 313

transport, like left-object detection and people counting, and to extend the collected videos, 314

including other critical scenarios such as unexpected emergencies – heart or panic attacks – 315

that could be misclassified as some violent actions. 316
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