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Abstract. Monitoring vehicle flows in cities is crucial to improve
the urban environment and quality of life of citizens. Images are the
best sensing modality to perceive and assess the flow of vehicles
in large areas. Current technologies for vehicle counting in images
hinge on large quantities of annotated data, preventing their scala-
bility to city-scale as new cameras are added to the system. This is
a recurrent problem when dealing with physical systems and a key
research area in Machine Learning and AI. We propose and discuss a
new methodology to design image-based vehicle density estimators
with few labeled data via multiple camera domain adaptations.

1 INTRODUCTION
Artificial Intelligence (AI) systems dedicated to the analysis and
interaction with the physical world can significantly impact hu-
man life. These systems can process a massive amount of data and
make/suggest decisions that help solve many real-world problems
where humans are at the epicenter.

Crucial examples of human-centered artificial intelligence, whose
aim is to create a better world by achieving common goals beneficial
to our societies, are city mobility, pollution monitoring, or critical
infrastructure management, where decision-makers require, for in-
stance, measurements about flows of bicycles, cars or people. Like
no other sensing mechanism, networks of city cameras can observe
such large dimensions and simultaneously provide visual data to AI
systems to extract relevant information from this deluge of data.

Different smart cameras across the city are subject to various vi-
sual conditions (luminance, position, context). This results in differ-
ent performances from each of them and added difficulty in effec-
tively scaling-up the learning task. In this paper, we address this issue
proposing a methodology that performs unsupervised domain adap-
tation among different cameras to compute the number of vehicles
in a city reliably. We focus on vehicle counting, but the approach is
applicable to counting any other type of object.

1.1 Counting as a supervised learning task
The counting problem is the estimation of the number of objects
instances in still images or video frames [7]. Current systems ad-
dress the counting problem as a supervised learning process. They
fall in two main classes of methods: a) detection-based approaches
([2, 4, 1]) that try to identify and localize single instances of objects
in the image and b)density-based techniques that rely on regression
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Figure 1. Example of an image with the bounding box annotations (left)
and the corresponding density map that sums to the counting value (right).

techniques to estimate a density map from the image, and where the
final count is given by summing all pixel values [7]. Figure 1 illus-
trates the mapping of such regression. Concerning vehicle counting
in urban spaces, where images are of very low resolution, and most
objects are partially occluded, density-based methods have a clear
advantage on detection methods [15, 6, 8, 3].

Hinging on Convolution Neural Networks (CNN) to learn the re-
gressor, this class of approaches has shown to be very effective, espe-
cially in single-camera scenarios. However, since they require pixel-
level ground truth for supervised learning, they may not generalize
well to unseen images, especially when there is a large domain gap
between the training (source) and the test (target) sets, such as differ-
ent camera perspectives, weather, or illumination. This gap severely
hampers the application of counting methods to very large scale sce-
narios since annotating images for all the possible cases is unfeasible.

1.2 Unsupervised domain adaptation
This paper proposes to generalize the counting process through a new
domain adaptation algorithm for density map estimation and count-
ing. Specifically, we suppose to have an annotated training set for
a source domain, and we want to adapt the system to perform well
in an unseen and unlabelled target domain. For instance, the source
domain consists of images taken from a set of cameras. In contrast,
the target domain consists of pictures taken from different cameras,
with different luminances, perspectives, and contexts. This class of
algorithms is commonly referred to as Unsupervised Domain Adap-
tation.

We conduct preliminary experiments using the WebCamT dataset
introduced in [13]. In particular, we consider a test set containing
images from cameras with different perspectives from the training
ones, showing that our unsupervised domain adaptation technique
can mitigate the perspective domain gap.



Traditional approaches of Unsupervised Domain Adaptation have
been developed to address the problem of image classification, and
they try to align features across the two domains ([5, 12]). However,
as pointed out in [14], they do not perform well in other tasks, such
as semantic segmentation.

2 Proposed Method

We propose an end-to-end CNN-based unsupervised domain adap-
tation algorithm for traffic density estimation and counting. Inspired
by [11], we base our method on adversarial learning in the output
space (density maps), which contains rich information such as scene
layout and context. In our approach, we rely on the adversarial learn-
ing scheme to make the predicted density distributions of the source
and target domains consistent.

The proposed framework, shown in Fig. 2, consists of two mod-
ules: 1) a CNN that predicts traffic density maps and estimates the
number of vehicles occurring in the scene, and 2) a discriminator that
distinguishes whether the density map (received by the density map
estimator) is generated processing an image of the source domain or
the target domain. In the training phase, the density map predictor
learns to map images to densities, based on annotated data from the
source domain. At the same time, it learns to fool the discrimina-
tor exploiting an adversarial loss, computed using the predicted den-
sity map of unlabeled images from the target domain. Consequently,
the output space is forced to have similar distributions for both the
source and target domains. In the inference phase, the discriminator
is discarded, and only the density map predictor is used for the target
images. A description of each module and their training is provided
in the following subsections.

2.1 Density Estimation Network

We formulate the counting task as a density map estimation problem
[7]. The density (weight) of each pixel in the map depends on its
proximity to a vehicle centroid and the size of the vehicle in the im-
age, as shown in Fig. 1, so that each vehicle contributes with a total
value of 1 to the map. Therefore, it provides statistical information
about the vehicles’ location and allows the counting to be estimated
by summing of all density values.

This task is performed by a CNN-based model, whose goal is
to automatically determine the vehicle density map associated with
a given input image. Formally, the density map estimator, Ψ :
RC×W×H 7→ RW×H, transforms a C channelsW×H input image,
I, into a density map, D = Ψ(I) ∈ RW×H.

2.2 Discriminator Network

The discriminator network, denoted by Θ, also consists of a CNN
model. It takes as input the density map, D, estimated by the net-
work Ψ. Its output is a lower resolution probability map. Each pixel
represents the probability that the corresponding area (from the input
density map) comes from the source or the target domain. The goal
of the discriminator is to learn to distinguish between density maps
belonging to source or target domains. This, in turn, forces the den-
sity estimator to provide density maps with similar distributions in
both domains, i.e., the density maps, D, of the target domain have to
look realistic, even if network Ψ was not trained with an annotated
training set from that domain.

2.3 Domain Adaptation Learning
The proposed framework is trained based on an alternate optimiza-
tion of density estimation network, Ψ, and the discriminator network,
Θ. Regarding the former, the training process relies on two compo-
nents: 1) density estimation using pairs of images and ground truth
density maps, which we assume are only available in the source do-
main; and 2) adversarial training, which aims to make the discrimi-
nator fail to distinguish between the source and target domains. As
for the latter, images from both domains are used to train the dis-
criminator on correctly classifying each pixel of the probability map
as either source or target.

To implement the above training procedure, we introduce two loss
functions: one is employed in the first step of the algorithm to train
network Ψ. The other is used in the second step to train the discrim-
inator Θ. These loss functions are detailed next.

Network Ψ Training. We formulate the loss function for Ψ as the
sum of two main components:

L(IS , IT ) = Ldensity(IS) + λadvLadv(IT ), (1)

where Ldensity is a composite loss computed using ground truth an-
notations available in the source domain, while Ladv is the adversar-
ial loss that is responsible for making the distribution of the target
and the source domain close each other. In particular, we define the
density loss Ldensity as:

Ldensity(IS) = Ldensity map(IS) + Lregression(IS), (2)

where Ldensity map is the mean square error between the pre-
dicted and ground truth density maps, i.e. Ldensity map =
MSE(DS , DS GT ), while Lregression is Euclidean loss between
predicted and ground truth count.

To compute the adversarial loss Ladv(IT ), we first forward the
images belonging to the target domain and we generate the predicted
density maps DT . Then, we compute

Ladv(IT ) = −
∑
h,w

log(Θ(DT )). (3)

This loss forces the distribution ofDT to be closer toDS by training
Ψ to fool the discriminator, maximizing the probability of the target
predicted density map to be considered as the source prediction.

Discriminator Θ Training. Given the estimated density mapD =
Ψ(I) ∈ RW×H, we forward D to a fully-convolutional discrimina-
tor Θ using a binary cross-entropy loss Ldisc for the two classes (i.e.,
source and target domains). We formulate the loss as:

Ldisc(D) = −
∑
h,w

[(1−y) log(Θ(D)(h,w,0))+y log(Θ(D)(h,w,1))],

(4)
where y = 0 if the sample is taken from the target domain, and y = 1
if the sample is taken from the source domain.

2.4 Implementation Details
Density Map Estimation and Counting Network. We build our
density map estimation network based on U-Net [10]. U-Net is a
popular end-to-end encoder-decoder network for semantic segmen-
tation first used for biomedical image segmentation. The encoder part
consists of convolution blocks, followed by max-pooling blocks that
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Figure 2. Algorithm overview. Given images having size C ×H ×W from source and target domains, we pass them through the density map estimation
and counting network to obtain output predictions. For source predictions, a density and counting loss is computed based on the source ground truth. To make

target predictions closer to the source ones, we employ a discriminator that aims to distinguish whether the input (i.e., the density map) belongs to the source or
target domain. Then an adversarial loss is computed on the target prediction and is back-propagated to the density map estimation and counting network.

downscale the feature representations at multiple levels. The decoder
part of the network upsamples the features through upsampling lay-
ers followed by regular convolution operations. Furthermore, the up-
sampled features are concatenated with the same scale features from
the encoder, containing more detailed spatial information and pre-
venting the network from losing spatial awareness due to downsam-
pling.
Discriminator. We use a Fully Convolutional Network similar to
[11, 9], composed of 5 convolution layers with kernel 4×4 and stride
of 2. The number of channels are {64, 128, 256, 512, 1}, respectively.
Each convolution layer is followed by a leaky ReLU having a param-
eter equals to 0.2.

3 EXPERIMENTAL SETUP
We conduct preliminary experiments using the WebCamT dataset in-
troduced in [13]. This dataset is a collection of traffic scenes recorded
using city-cameras, and it is particularly challenging for analysis due
to the low-resolution (352 × 240), high occlusion, and large per-
spective. We consider a total of about 42,000 images belonging to
10 different cameras and consequently having different perspectives.
We employ the existing bounding box annotations of the dataset to
generate ground truth density maps, one for each image. In particu-
lar, we consider one Gaussian Normal kernel for each vehicle present
in the scene, having a value of µ and σ equals to the center and pro-
portional to the length of the bounding box surrounding the vehicle,
respectively.

Firstly, we show the domain gap that we want to face. We gen-
erate a first pair of training and validation subsets, picking images
randomly from the whole dataset. Then, we create a second pair of
training and validation subsets, this time picking images belonging
to seven different cameras for the first and pictures belonging to the
three remaining ones for the second (per-camera splits of the whole
dataset). We show the domain gap training our model without the dis-
criminator on the training subsets and comparing the results obtained
over the validation splits.

Once we quantified and proved this domain gap, we try to mitigate
it, conducting experiments on the per-camera splits using our solu-
tion, i.e., the network Ψ and the discriminator Θ that acts on the out-

put space. In particular, during the training, we also use the images
belonging to the validation subset without the labels to generate an
adversarial loss aimed at making the source domain (i.e., the training
subset) and the target domain (i.e., the validation subset) close each
other.

We base the evaluation of the models on three metrics: (i) Mean
Absolute Error (MAE) that measures the absolute count error of each
image; (ii) Mean Squared Error (MSE) that penalizes large errors
more heavily than small ones; (iii) Average Relative Error (ARE),
which measures the absolute count error divided by the true count.

4 RESULTS AND DISCUSSION

Figure 3 (a) shows the results for the two validation sets - the random
one and the per-camera one, using the density estimation network
without the discriminator trained over the two training subsets - the
random one and the per-camera one, respectively. Each plot corre-
sponds to one of the three metrics. As we can see, the domain gap is
significant: even if all the subsets’ images belong to the same dataset
and are collected in the same city under similar conditions, small
changes to the perspectives cause a remarkable loss in performance.
In other words, the network cannot generalize well to views that have
not been seen during the training.

When combining the density estimation network with the adver-
sarial component, the performance of the system improves consid-
erably. These results are shown in Figure 3 (b), where the improve-
ments obtained using our model (red line) compared to the baseline
model, without discriminator, is visible in all the three metrics. The
discriminator mitigates the domain gap, and the network can gener-
alize better over images having different perspectives from the ones
employed during the training. The results are related to a specific
value of λ that showed the most promising results.

Since all the metrics that we considered take into account only the
counting errors, we also plot some examples of the predicted den-
sity maps using our model either with and without the discriminator.
Figure 4 shows the ground truth and the predicted density maps for
two random samples of the validation subset. As we can see, the
density maps predicted using the model with the discriminator show
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Figure 3. Performance during training: (a) Comparison between the
random and the per-camera validation splits showing the domain gap; (b)

comparison between the proposed approach with and without discriminator.
Each row corresponds to a specific evaluation metric.

Figure 4. Examples of predicted density maps belonging to two samples
of the validation subset (each row corresponds to a sample). From left to

right, the original image, the ground truth density map, the predicted density
map obtained using the model without the discriminator, and the predicted

density map using our domain adaptation algorithm.

a decrease of the noise compared with the ones obtained using the
baseline model without the discriminator.

5 CONCLUSIONS
In this article, we tackle the problem of determining the density and
the number of objects present in large sets of images. Building on a
CNN-based density estimator, the proposed methodology can gener-
alize to new sources of data for which there is no training data avail-
able. We achieve this generalization by adversarial learning, whereby
a discriminator attached to the output induces similar density distri-
bution in the target and source domains. Experiments show a signif-
icant improvement relative to the performance of the model without

domain adaptation. Given the conventional structure of the estima-
tor, the improvement obtained by just monitoring the output entails
a great capacity to generalize training, thus suggesting applying sim-
ilar principles to the inner layers of the network. In our view, this
work’s surprising outcome opens new perspectives to deal with the
scalability of learning methods for large physical systems with scarce
supervisory resources.
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