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Abstract. In this paper, we present a real-time pedestrian detection
system that has been trained using a virtual environment. This is a very
popular topic of research having endless practical applications and re-
cently, there was an increasing interest in deep learning architectures for
performing such a task. However, the availability of large labeled datasets
is a key point for an effective train of such algorithms. For this reason,
in this work, we introduced ViPeD, a new synthetically generated set of
images extracted from a realistic 3D video game where the labels can
be automatically generated exploiting 2D pedestrian positions extracted
from the graphics engine. We exploited this new synthetic dataset fine-
tuning a state-of-the-art computationally efficient Convolutional Neural
Network (CNN). A preliminary experimental evaluation, compared to
the performance of other existing approaches trained on real-world im-
ages, shows encouraging results.

1 Introduction

Pedestrian detection remains a very popular topic of research having endless
practical applications. An important application domain of this topic is certainly
video surveillance for public security, such as crime prevention, identification of
vandalism, etc. A real-time response in the case of an incident, however, requires
manual observation of the video stream, which is in most cases economically not
feasible.

We propose a real-time CNN-based solution that is able to localize pedestrian
instances in images captured by smart cameras. CNNs are a popular choice for
current objects detectors since they are able to automatically learn features char-
acterizing the objects themselves; in the last years, these solutions outperformed
approaches relying instead on hand-crafted features.

The great challenge we must address using CNNs is the ability of these
algorithms to generalize to new scenarios having different characteristics, like
different perspectives, illuminations and object scales. This is a must when we
are dealing with smart devices that should be easily installed and deployed,
without the need for an early tuning phase. Therefore, the availability of large
labeled training datasets that cover as much as possible the differences between
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various scenarios is a key point for training state-of-the-art CNNs. Although
there are some large annotated generic datasets, such as ImageNet [1] and MS
COCO [2], annotating the images is a very time-consuming operation, since it
requires great human effort, and it is error-prone. Furthermore, sometimes it is
also problematic to create a training/testing dataset with specific characteristics.

A possible solution to this problem is to create a suitable dataset collecting
images from virtual world environments that mimics as much as possible all the
characteristics of our target real-world scenario. In this paper, we introduce a
new dataset named ViPeD (Virtual Pedestrian Dataset), a large collection of
images taken from the highly photo-realistic video game GTA V - Grand Theft
Auto V developed by Rockstar North, that extends the JTA (Joint Track Auto)
dataset presented in [3]. We demonstrate that we can improve performance and
achieve competitive results compared to the state-of-the-art approaches in the
pedestrian detection task.

In particular, we train a state-of-the-art object detector, YOLOv3 [4], over
the newly introduced ViPeD dataset. Then, we test the trained detector on
the MOT17 detection dataset (MOT17Det) [5], a real-world dataset suited for
pedestrian detection, in order to measure the generalization capabilities of the
proposed solution with respect to real-world scenarios.

To summarize, in this work we propose a real-time CNN-based system able
to detect pedestrians for surveillance smart cameras. We train the algorithm
using a new dataset collected using images from a realistic video game and we
take advantage of the graphics engine for extracting the annotations without any
human intervention. Finally, we evaluate the proposed method on a real-world
dataset demonstrating his effectiveness and robustness to other scenarios.

2 Related Work

In this section, we review the most important works in object and pedestrian de-
tection. We also analyze previous studies on using synthetic datasets as training
sets. Pedestrian detection is highly related to object detection. It deals with rec-
ognizing the specific class of pedestrians, usually walking in urban environments.
Approaches for tackling the pedestrian detection problem are usually subdivided
into two main research areas. The first class of detectors is based on handcrafted
features, such as ICF (Integral Channel Features) [6–10]. Those methods can
usually rely on higher computational efficiency, at the cost of lower accuracy. On
the other hand, deep neural networks approaches have been explored. [11–14]
proposed some modifications around the standard CNN network [15] in order to
detect pedestrians, even accounting for different scales.

Many datasets are available for pedestrian detection. Caltech [16], MOT17Det
[5], INRIA [17], and CityPersons [18] are among the most important ones. Since
they were collected in different living scenarios, they are intrinsically very hetero-
geneous datasets. Some of them [16, 17] were specifically collected for detecting
pedestrians in self-driving contexts. Our interest, however, is mostly concen-
trated on video-surveillance tasks and, in this scenario, the recently introduced
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MOT17Det dataset has proved to be enough challenging due to the high vari-
ability of the video subsets. State-of-the-art results on this dataset are reached
by [13]. With the need for huge amounts of labeled data, generated datasets
have recently gained great interest. [19,20] have studied the possibility of learn-
ing features from synthetic data, validating them on real scenarios. Unlike our
work, however, they did not explore deep learning approaches. [21, 22] focused
their attention on the possibility to perform domain adaptation in order to map
virtual features onto real ones. Authors in [3] created a dataset taking images
from the highly photo-realistic video game GTA V and demonstrated that it
is possible to reach excellent results on tasks such as people tracking and pose
estimation when validating on real data.

To the best of our knowledge, [23] and [24] are the works closest to our setup.
In particular, [23] also used GTA V as the virtual world but, unlike our method,
they used Faster-RCNN [25] and they concentrated on vehicle detection.

Instead, [24] used a synthetically generated dataset to train a simple convo-
lutional network to detect objects belonging to various classes in a video. The
convolutional network dealt only with the classification, while the detection of
objects relied on a background subtraction algorithm based on Gaussian mix-
ture models (GMMs). The real-world performance was evaluated on two common
pedestrian detection datasets, and one of these (MOTChallenge 2015 [26]) is an
older version of the dataset we used to carry out our experimentation.

3 The ViPeD Dataset

In this section, we describe the datasets exploited in this work. First, we in-
troduce ViPeD -V irtual Pedestrian Dataset, a new virtual collection used for
training the network. Then we outline MOT17Det [5], a real dataset employed for
the evaluation of our proposed solution. Finally, we illustrate CityPersons [18], a
real-world dataset for pedestrian detection we used as baseline. In order to show
the validity of ViPeD , we have compared our network trained with CityPersons
against the same network trained with ViPeD .

3.1 ViPeD - Virtual Pedestrian Dataset

As mentioned above, CNNs need large annotated datasets during the training
phase in order to learn models robust to different scenarios, and creating the
annotations is a very time-consuming operation that requires a great human
effort.

The main contribution of this paper is the creation of ViPeD , a huge collec-
tion of images taken from the highly photo-realistic video game GTA V devel-
oped by Rockstar North. This newly introduced dataset extends the JTA (Joint
Track Auto) dataset presented in [3]. Since we are dealing with images collected
from a virtual world, we can extract pedestrian bounding boxes for free and with-
out the manual human effort, exploiting 2D pedestrian positions extracted from
the video card. The dataset includes a total of about 500K images, extracted
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from 512 full-HD videos (256 for training and 256 for testing) of different urban
scenarios.

In the following, we report some details on the construction of the bounding
boxes and on the data augmentation procedure that we used to extend the JTA
dataset for the pedestrian detection task.

A) Bounding Boxes: Since JTA is specifically designed for pedestrian pose esti-
mation and tracking, the provided annotations are not directly suitable for the
pedestrian detection task. In particular, the annotations included in JTA are
related to the joints of the human skeletons present in the scene (Fig. 1a), while
what we need for our task are the coordinates of the bounding boxes surrounding
each pedestrian instance.

Bounding box estimation can be addressed using different approaches. The
GTA graphic engine is not publicly available, so it is not easy to extract the
detailed masks around each pedestrian instance; [23] overcame this issue by
extracting semantic masks and separating the instances by exploiting depth
information. Instead, our approach exploits the skeletons annotations already
extracted by the JTA team in order to reconstruct the precise bounding boxes.
This seems to be a more reliable solution than the depth separation approach,
especially when instances are densely distributed, as in the case of crowded
pedestrian scenarios.

The very basic setup consists of drawing the smallest bounding box that
encloses all the skeleton joints. The main issue with this simple approach is
that each bounding box perfectly contains the skeleton, but not the pedestrian
mesh. Indeed, we can note that the mesh is always larger than the skeleton
(Fig. 1b). We solved this problem by estimating a pad for the skeleton bounding
box, exploiting another information produced by the GTA graphic engine and
already present in JTA, i.e. the distance of all the pedestrians in the scene from
the camera.

(a) (b)

Fig. 1: (a) Pedestrians in the JTA dataset with their skeletons. (b) Examples of
annotations in the ViPeD dataset; original bounding boxes are in yellow, while
the sanitized ones are in light blue.
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In particular, the height of the ith mesh, denoted as him, can be estimated
from the height of the ithskeleton his by means of the formula:

him = his +
α

zi
(1)

where zi is the distance of the ith pedestrian center of mass from the camera,
and α is a parameter that depends on the camera projection matrix.

Given that zi is already available for every pedestrian, we estimated the
parameter α by manually annotating 30 random pedestrians, obtaining for them
the correct value for him, and then performing linear regression. We visually
checked that the α parameter estimation was correct even for all the other non-
manually annotated pedestrians.

We then estimated the mesh width wi
m. Unlike the height, the width is

strongly linked to the specific pedestrian pose, so it is difficult to be estimated
with only the camera distance information. We decided to estimate wi

m directly
from him, assuming no changes in the aspect ratio for the original and adjusted
bounding boxes:

wi
m = him

wi
s

his
= himr

i (2)

where ri is the aspect ratio of the ith bounding box. Examples of final estimated
bounding boxes are shown in Fig. 1b.

Finally, we performed a global analysis of these new annotations. As we can
see in Fig. 2, in the dataset there are annotations of pedestrians farthest than
30-40 meters from the camera. However, we evaluated that humans annota-
tors tend to avoid annotating objects farthest than this amount. We performed
this analysis by measuring the height of the smallest bounding boxes in the
human-annotated MOT17Det dataset [5] and catching out in our dataset at
what distance from the camera the bounding boxes assume this human-limit
size. Therefore, in order to obtain annotations comparable to real-world human-
annotated ones, we decided to prune all the pedestrian annotations furthest than
40 meters from the camera.

From this point on, we will refer to the basic skeleton bounding boxes as
original bounding boxes. Instead, we will refer to the bounding boxes processed
by means of the previously described pipeline as sanitized (Fig. 1b).

B) Data Augmentation: Synthetic datasets should contain scenarios as close as
possible to real-world ones. Even though images grabbed from the GTA game
were already very realistic, we noticed some missing details. In particular, images
grabbed from the game are very sharp, edges are very pronounced and common
lens effects are missing. In light of this, we prepared a more realistic version of
the original images.

We used GIMP image manipulation software, used in batch mode, in order to
modify every image of the original dataset, using a set of different filters: radial
blur, Gaussian blur, bloom effect, exposure/contrast. Parameters for these effects
are randomly sampled from a uniform distribution.
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Fig. 2: Histogram of distances between pedestrians and cameras.

3.2 MOT17Det

We evaluate our solution using the recently introduced MOT17Det dataset [5], a
collection of challenging images for pedestrian detection taken from 14 sequences
with various crowded scenarios having different viewpoints, weather conditions,
and camera motions. The annotations for all the sequences are generated by
human annotators from scratch, following a specific protocol described in their
paper. The training images are taken from sequences 2, 4, 5, 9, 10, 11 and 13
(for a total of 5,316 images), while test images are taken from the remaining
sequences (for a total of 5,919 images). It should be noted that the authors
released only the ground-truth annotations belonging to the training subset.
The performance metrics concerning the test subset are instead available only
submitting results to the MOT17Det Challenge1.

3.3 CityPersons

In order to compare our solution trained using synthetic data against the same
network trained with real images, we have also considered the CityPersons
dataset [18], a recent collection of images of interest for the pedestrian detec-
tion community. It consists of a large and diverse set of stereo video sequences
recorded in streets from different cities in Germany and neighboring countries.
In particular, authors provide 5,000 images from 27 cities labeled with bounding
boxes and divided across train/validation/test subsets.

4 Method

We use YOLOv3 [4] as object detector architecture, exploiting the original Dark-
net [27] implementation. The architecture of YOLOv3 jointly performs a regres-
sion of the bounding box coordinates and classification for every proposed region.

1 https://motchallenge.net/data/MOT17Det/
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Unlike other techniques, YOLOv3 performs these tasks in an optimized fully-
convolutional pipeline that takes pixels as input and outputs both the bounding
boxes and their respective proposed categories. It is particularly robust to scale
variance since it performs the detections at three different scales, down-sampling
the input image by factors 32, 16 and 8.

As a starting point, we considered a model of YOLO pre-trained on the
COCO dataset [2], a large dataset composed of images describing complex ev-
eryday scenes of common objects in their natural context, categorized in 80
different categories. Since this network is a generic objects detector, we then
specialized it to recognize and localize object instances belonging to a specific
category - i.e. the pedestrian category in our case.

Our goal is to evaluate the detector when it is trained with synthetic data.
For this reason, we need to partially retrain the architecture to include new
information deriving from a different domain.

In this particular work, domain adaptation between virtual and real scenarios
is simply carried out by fine-tuning the pre-trained YOLOv3 architecture. In
particular, we first extract the weights of the first 81 layers of the pre-trained
model, since these layers capture universal features (like curves and edges) that
are also relevant to our new problem. Then, we fine-tune YOLO initialing the
firsts 81 layers with the previously extracted weights, and the weights associated
with the remaining layers at random. In this way, we get the network to focus
on learning the dataset-specific features in the last layers. All the weights are
left unfrozen, so they can be adjusted by the back-propagation algorithm. With
this technique, we are forcing the architecture to adjust the learned features to
match those from the destination dataset.

5 Experimental Evaluation

We evaluate our solution in two different cases: first, in order to test the general-
ization capabilities, we train the detector using only our new synthetic dataset;
then, in order to obtain best results on the MOT17Det dataset and compare
them with the state-of-the-art, we evaluate detections after fine-tuning the de-
tector also on the MOT17Det dataset itself.

Since the authors did not release the ground-truth annotations belonging to
the test subset, we submitted our results to the MOT17Det Challenge in order
to obtain the performance metrics. In order to prevent overfitting during the
training in the second scenario, we create a validation split from the training
subset considering a randomly chosen sequence. For the first scenario, instead,
we validate on the full training set of MOT17Det.

Following other object detectors benchmarks, we use Precision, Recall and
Average Precision (AP) as the performance metrics. A key parameter in all
these metrics is the intersection-over-union threshold (IoU ), which determines
if a bounding box is matched to an annotation or not, i.e. if it is a true positive
or a false positive.
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Precision and Recall are defined as:

Precision =
TPs

TPs+ FPs
Recall =

TPs

TPs+ FNs
(3)

where TPs are the True Positives, FPs the False Positives and FN the False
Negatives. Average Precision is instead defined as the average of the maximum
precisions at different recall values.

It is fairly common to observe detection algorithms compared under different
thresholds, and there are often many variables and implementation details that
differ between evaluation scripts which may affect results significantly. In this
work, we consider only MOT17Det and COCO performance evaluators. We also
use the standard IoU threshold value of 0.5.

Evaluation of the generalization capabilities Considering the first sce-
nario, we first obtained a baseline using the original detector, i.e. the detector
trained using the real-world general-purpose COCO dataset. Then, we trained
the detector using our synthetic dataset, performing an ablation study over the
introduced extensions.

First, we considered the original images and the original bounding boxes.
Then, in order to evaluate how much the bounding-box construction policy can
affect the detection quality, we considered the sanitized bounding boxes. Third,
we considered also augmented images. Finally, we train the detector using the
real-world dataset CityPersons, specific for the pedestrian detection task. We
employ this experiment as a baseline over our ViPeD trained network. Results
are reported in Table 1.

Comparison with the state-of-the-art on MOT17Det Concerning the sec-
ond scenario, we obtained a baseline starting from the original detector trained
with COCO and fine-tuning it with the training set of the MOT17Det dataset.
Then, we considered our previous detector trained with ViPeD (the one with
the sanitized bounding boxes and the augmented images) and we fine-tuned

Table 1: Results of YOLOv3 detector on MOT17Det

Training Dataset MOT AP COCO AP Precision Recall

COCO (Baseline) 0.69 0.41 87.4 72.4

CityPersons 0.58 0.37 69.0 60.5

ViPeD : Orig. BBs - Orig. Imgs 0.58 0.37 68.6 64.8

ViPeD : Sanitized BBs - Orig. Imgs 0.63 0.40 91.1 69.2

ViPeD : Sanitized BBs - Aug. Imgs 0.71 0.48 89.3 73.9



Learning Pedestrian Detection from Virtual Worlds 9

again the network with the training set of the MOT17Det dataset. Results are
reported in Table 2, together with the ones obtained using the state-of-the-art
approaches publicly released in the MOT17 Challenge (at the time of writing).

Table 2: Results on MOT17Det: comparison with the state-of-the-art

Method MOT AP Precision Recall

YOLOv3 on COCO + MOT 0.80 89.9 82.8

YTLAB [13] 0.89 86.2 91.3

KDNT [28] 0.89 78.7 92.1

ZIZOM [29] 0.81 88.0 83.3

SDP [12] 0.81 92.6 83.5

YOLOv3 on ViPeD + MOT 0.80 90.2 84.6

Discussion Results in Table 1 show that we obtained best performances train-
ing the detector with ViPeD, using the sanitized bounding boxes and the aug-
mented images, overtaking also the networks trained with COCO and with
CityPersons. Therefore, our solution is able to generalize the knowledge learned
from the virtual-world to a real-world dataset, and it is also able to perform bet-
ter than the solutions trained using the real-world manual-annotated datasets.

Results in Table 2 demonstrate that our training procedure is able to reach
competitive performance even when compared to specialized pedestrian detec-
tion approaches.

6 Conclusions

In this work, we propose a real-time system able to detect pedestrian instances
in images. Our approach is based on a state-of-the-art fast detector, YOLOv3,
trained with a synthetic dataset named ViPeD, a huge collection of images ren-
dered out from the highly photo-realistic video game GTA V developed by
Rockstar North.

The choice of training the network using synthetic data is motivated by
the fact that a huge amount of different examples are needed in order for the
algorithm to generalize well. This huge amount of data is typically manually
collected and annotated by humans, but this procedure usually takes a lot of
time and it is error-prone. We demonstrated that our solution is able to transfer
the knowledge learned from the synthetic data to the real-world, outperforming
the same approach trained instead on real-world manually-labeled datasets.
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The YOLOv3 network is able to run on low-power devices, such as the
NVIDIA Jetson TX2 board, at 4 FPS. In this way, it could be deployed di-
rectly on smart devices, such as smart security cameras or drones. Even if we
trained YOLOv3 detector on the specific task of pedestrian detection, we think
that the presented procedure could be applied at a larger scale even on other
related tasks, such as object segmentation or image classification.
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